PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease
نویسندگان
چکیده
C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering up of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a "locked" conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.
منابع مشابه
Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems.
Microbial CRISPR-Cas systems are divided into Class 1, with multisubunit effector complexes, and Class 2, with single protein effectors. Currently, only two Class 2 effectors, Cas9 and Cpf1, are known. We describe here three distinct Class 2 CRISPR-Cas systems. The effectors of two of the identified systems, C2c1 and C2c3, contain RuvC-like endonuclease domains distantly related to Cpf1. The th...
متن کاملProtospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.
CRISPR-Cas9 is a genome editing technology with major impact in life sciences. In this system, the endonuclease Cas9 generates double strand breaks in DNA upon RNA-guided recognition of a complementary DNA sequence, which strictly requires the presence of a protospacer adjacent motif (PAM) next to the target site. Although PAM recognition is essential for cleavage, it is unknown whether and how...
متن کاملSequence features associated with the cleavage efficiency of CRISPR/Cas9 system.
The CRISPR-Cas9 system has recently emerged as a versatile tool for biological and medical research. In this system, a single guide RNA (sgRNA) directs the endonuclease Cas9 to a targeted DNA sequence for site-specific manipulation. In addition to this targeting function, the sgRNA has also been shown to play a role in activating the endonuclease activity of Cas9. This dual function of the sgRN...
متن کاملPrediction and Validation of Native and Engineered Cas9 Guide Sequences.
Cas9-based technologies rely on native elements of Type II CRISPR-Cas bacterial immune systems, including the trans-activating CRISPR RNA (tracrRNA), CRISPR RNA (crRNA), Cas9 protein, and protospacer-adjacent motif (PAM). The tracrRNA and crRNA form an RNA duplex that guides the Cas9 endonuclease to complementary nucleic acid sequences. Mechanistically, Cas9 initiates interactions by binding to...
متن کاملPhylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
The CRISPR-Cas-derived RNA-guided Cas9 endonuclease is the key element of an emerging promising technology for genome engineering in a broad range of cells and organisms. The DNA-targeting mechanism of the type II CRISPR-Cas system involves maturation of tracrRNA:crRNA duplex (dual-RNA), which directs Cas9 to cleave invading DNA in a sequence-specific manner, dependent on the presence of a Prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 167 شماره
صفحات -
تاریخ انتشار 2016